Closing Tues: HW 9.5
Closing Thurs: HW 9.6, HW 9.7(1)
Monday is a holiday (no class, no MSC)!

9.5/9.6 Product, Quotient, Chain rules

Consider the three functions:

$$
\begin{aligned}
& y=\left(x^{5}+4 x+7\right)\left(x^{4}+2 x\right) \\
& y=\frac{x^{4}+5 x}{x^{7}-x^{2}}
\end{aligned}
$$

$$
y=\left(4 x^{2}-3 x\right)^{10}
$$

PRODUCT RULE: $\frac{d}{d x}(f(x) g(x))=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$.

QUOTIENT RULE:

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

You try: Differentiate

1. $y=x^{2}\left(x^{3}+1\right)$
2. $y=\frac{5}{x^{3}}$
3. $y=\left(x^{2}+3 x\right)\left(\sqrt{x}-5 x^{3}\right)$
4. $y=\frac{x^{5}}{3 x^{3}-x^{5}}$

CHAIN RULE:

$$
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)
$$

All Rules:

$$
\begin{aligned}
& \frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x) . \\
& \frac{d}{d x}(c f(x))=c f^{\prime}(x) . \\
& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} . \\
& \frac{d}{d x}(f(x) g(x))=f(x) g^{\prime}(x)+f^{\prime}(x) g(x) . \\
& \frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}} \\
& \frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)
\end{aligned}
$$

Equations for Tangent lines

 Recall:All the points (x, y) on a given line can be described by an equation of the form

$$
y=m\left(x-x_{0}\right)+y_{0}
$$

where

$$
m=\text { slope of the line }
$$

$\left(x_{0}, y_{0}\right)=$ any point on the line

Review Question:
Find the equation of the line that has
slope 8 and goes through $(3,7)$.

Since $f^{\prime}(x)$ is the slope of the tangent line, we can use it to get the equation for the tangent line.

Example: Let

$$
f(x)=\frac{x^{3}+3}{2 x-1}
$$

Find the equation for the tangent line at $x=1$.

